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Roma, Italy

Received 16 July 1997, in final form 17 October 1997

Abstract. By using numerical simulations we show that the four-dimensionalJ = ±1 Edwards
Anderson spin glass in magnetic field undergoes a mean-field-like phase transition. We use a
dynamical approach: we simulate large lattices (of volumeV ) and work out the behaviour of
the system in a limit where botht andV go to infinity, but where the limitV → ∞ is taken
first. By showing that the dynamic overlapq converges to a value smaller than the static one we
exhibit replica symmetry breaking. The critical exponents are compatible with those obtained
by mean-field computations.

The mean-field solution of spin glass systems [1] contains many new features. It informs
us that systems with quenched disorder can have a large number of stable states, not related
by explicit symmetries of the original Hamiltonian, and that the space of these states is
embedded with an ultrametric structure. Moreover, the system remains critical for all
T < Tc and the phase transition of replica symmetry breaking (RSB) survives the presence
of a finite magnetic fieldh.

The mean-field paradigm needs to be analysed, in order to understand how many of
its peculiar features are shared by the finite-dimensional, physically relevant case. Despite
the technical difficulties, recently much progress has been achieved. It is, for example,
remarkable that recent rigorous results [2] seem to support strongly (after some initial
different feelings [3]) the viability of the mean-field approach for the description of finite-
dimensional systems. It has been shown [2] that the rigorous finite-dimensional construction
of [3] leads to self-averaging quantities exactly where the mean-field construction would
also produce self-averaging observables, and Guerra [2] has shown that the main part (and
maybe all) of the replica predictions on the fluctuations of non-self-averaging quantities
applies to the broken phase of finite-dimensional disordered systems (see also [4]).

Monte Carlo simulations are an important tool to establish how much of the mean-
field description survives in the finite-dimensional case [5, 6]. For example there is now
evidence for the existence of a three-dimensional (3D) mean-field-like critical point, for
the existence of an ultrametric structure in four dimensions, and for a dynamical behaviour
of finite-dimensional systems very similar to the one that can be found analytically in the
Sherrington–Kirkpatrick (SK) mean-field model.

The question of the existence of a de Almeida–Thouless [7] line, i.e. of the existence
of a phase transition in finite magnetic field, is maybe the most relevant open problem.

0305-4470/98/041181+07$19.50c© 1998 IOP Publishing Ltd 1181



1182 E Marinari et al

Even if a large amount of numerical work has been done to clarify this issue [8, 9], a clear
cut answer is still lacking. Most of the numerical work suggests that a transition exists
(even if some studies suggest the opposite conclusion), but the question is a very delicate
one: one finds probability distributions that do not have a very clear behaviour, and it is
very difficult to thermalize large systems in the low-temperature (T ) region. Even the most
recent numerical work of [9] does not reach unambiguous conclusions.

Here we hope to settle the question, by showing in a non-ambiguous way that the
four-dimensional (4D) spin glass with quenched couplingsJ = ±1 in finite magnetic field
undergoes a mean-field-like phase transition.

We use a dynamical approach. If a large system is cooled down to a temperature
Tf , starting from the high-temperature region, after a timet the correlation functions are
different from zero (in a statistically significant way) only up to distances smaller than a
dynamic correlation lengthξ(t). Often (and this seems to be the case of spin glasses in the
low T phase)ξ(t) increases as a power oft , i.e. ξ(t) ∝ t1/z(T ). If the lattice sizeL is larger
than ξ(t), for large times the system is locally, but not globally, thermalized. In the case
of an infinite lattice this is always the case, independently from the value oft . As we shall
later see, our choice of the lattice volume,V = 204, is such that we remain in this situation.
Then by using power fits we keep the large time limit under control, and we determine with
high precision the infinite time expectation values, always in the phase whereL > ξ(t).

A key prediction of the theory of RSB is that when comparing different realizations of
the system we find that there are local quantities which take a different value in thet →∞
andV → ∞ limits in the two regionsL � ξ(t) andL � ξ(t). In the following we will
call respectively dynamic and static the expectation values computed in the first and second
regions. We aim to show that in 4D spin glasses in magnetic field at low temperature
the two expectation values are different and therefore the replica symmetry is broken, as
expected from mean-field computations. We will select one (large) value ofL, and sets
of values ofT andh such that indeedξ is large, butξ � L (see later for a quantitative
estimate). In this condition we will safely be able to exhibit the critical behaviour of the
model.

This work contains two kind of results. First of all we discuss some inequalities, both
at finiteh and in theh→ 0 limit, that can only be violated if replica symmetry is broken.
We use our numerical simulations to show that indeed such inequalities are broken forT

small enough. Second we show that our data for the overlap and underlying timescales
obey an impressive scaling versus the magnetic field, and that the critical exponents turn
out to be very similar to the mean-field theoretical prediction.

Numerical data are drawn from dynamical runs scheduled according to the following
scheme. We start atT1 = 3.00 (the value of the critical temperature ath = 0 is close to
2.0) and decreaseT with steps of 0.25 down toT9 = 1.00. For an annealing run of levelk
at T = Tn, n2k steps are performed withk spanning from 5 to 16 (14 for the larger fields)
andh from 0.2 to 0.6 (runs ath = 0.1 do not reach enough precision to be used for fitting,
and have only been included in the matching analysis, see later). In total our longer runs
involve order of 3000 000 sweeps of the 204 lattice. The quantityt ≡ 2k plays the role of a
time: we will be extrapolating expectation values onk at givenT andh. We use two copies
of the systemσ andτ in each realization of the quenched couplings to compute the overlap
q ≡∑i σiτi/V . We use a multispin coded algorithm [10] that allows us to flip more than
70× 106 spins/s on a digitalα workstation 500/333. We have averaged over 64 samples
for eachk andh value (for very few cases we only have 32 samples). In principle we could
also put the system at the final temperature by a a sudden quench. We have followed the
previous procedure for two reasons. (a) Finite-time effects are smaller and the infinite-time
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Figure 1. q(t) versust and best fit.

extrapolation is easier. (b) We can collect in one run data at different temperatures.
Distinguishing in a reliable way among the dynamic and static regimes, and performing

a safe extrapolation of the finite-time data is crucial in this approach. All the data that we
are presenting in the following are based on a careful analysis of all the different issues.
When fitting versus time, for example, we have always checked stability for a large range
of time windows(minimum and maximum time distance used in the fit): see for example
figure 3 for the systematic error that this effect can induce. We use a large lattice, so we are
sure that the transient to the (finite-volume dictated) static equilibrium regime, is far away.
As we explain better later, we remain in a regime where we are sure that the correlation
length is much smaller than the lattice size (we expect to need a run 108 times longer
than ours to see the transient to the static behaviour). Runs on smaller lattices, even if not
quantitative, confirm this qualitative picture. A nice quantitative test of this approach can
be found in [11].

The first kind of evidence is based on our results forq(t) at fixedh. We extrapolateq(t)
to its value for infinite timeqD (whereD stands for dynamical and is also the minimum
allowed value forq at equilibrium, qmin [8]). We compareqD with the static valueq
computed with equilibrium runs for a 74 system [9] (preliminary runs† of [12] confirm the
determination ofqS of [9] down to T = 1.00).

We show that at lowT qD < qS strictly, i.e. that replica symmetry is broken. In figure 1
we show two typical fits for lowT = 1.0, ath = 0.4 andh = 0.2 (here we are using for
fitting all the data points: see later for scaling time windows). Moreover, since the values
of q increase with the lattice sizes in the static runs of [9], our evidence is safe also from
the point of view of finite-size effects.

The power fits are very good. One findsq(t) = 0.56(1) − 0.44(3)t−0.28(3) and
q(t) = 0.50(2) − 0.58(2)t−0.21(3) respectively ath = 0.4 and 0.2. Both fits have a very
goodχ2.

In figure 2 we plot our data forqD (broken curve and error bars) ath = 0.4 and the
static data of [9]. For high values ofT the data are in perfect agreement, while atT = 1.5

† The authors of [12] have used parallel tempering and analysed a large number of samples. Withh = 0.4 they
have been able to thermalize up to 94 lattices down toT = 1.00. The results forq coincide with statistical
significance with those of [9].



1184 E Marinari et al

Figure 2. qD from our runs andqS from versusT .

the two curves start to split in a statistically significant way.
Both atT = 1.25 andT = 1.0 it is clear that the difference of the dynamic and static

value is both statistically and systematically significant with a large confidence level. So
at h = 0.4 we have evidence that forT 6 1.25 the system is in a mean-field-like broken
phase. These results are in good agreement with the data of [9] that suggests a transition
nearT = 1.5 at this value of the magnetic field.

The reader could wonder if in our simulations the inequalityL� ξ(t) is satisfied. By
estimating the exponentz(T ) from the simulations ath = 0 we find thatz ≈ 10 atT = 1.0
and that the bound should be saturated for times O(1013), which is much larger than the
largest timescales of our numerical simulation. Simple power fits to energy, overlap and
magnetization and to their fluctuations are good: this is an independent indication of the
fact that all our data are in the region whereL � ξ(t). Moreover, even ifL was close to
ξ(t) our conclusion would be strengthened since then the difference among the measured
dynamical value and the static value could only decrease.

Next we discuss theh → 0 limit. We consider the susceptibilityχ ≡ limh→0
m
h

. If
replica symmetry is realized we have that forh→ 0 the susceptibilityχ = β(1−q), where
there is no ambiguity in the definition ofq. We can thus define

q̃(h) ≡ 1− T m(h)
h

. (1)

If in the h → 0 limit q̃ 6= qD, then replica symmetry is broken. In a theory where
replica symmetry is broken the smallh limit of q̃ is qS . More precisely for finiteh we
find that q̃(h) = qS(h) + O(h2). In figure 3(a) we showqD at T = 1.0 as a function of
h (open circles), together with the values ofq̃(h) (full circles). The two functions do not
extrapolate to the same value ath = 0. Replica symmetry is broken in the region where
qD is smaller than theh = 0 limit of q̃. If we neglect terms of orderh2 (the difference
amongq̃ andqS is about 0.02 ath = 0.4), replica symmetry must be broken when the two
curves differ in a statistically significant way (i.e. in our case atT = 1.0, for h < 0.5).

As we will discuss later we have determined a rescaling of times as a function ofh

that makes the curvesq(t) at different fields universal. We can thus determine consistent
h-dependent time windows, that allow us to compare homogeneous time regimes at the
differenth values. Thek-windows used for these scaling fits (t ≡ 2k) are 8–16 ath = 0.2,
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Figure 3. qD and q̃ from fits including all time points and from fits performed over rescaled
time windows.

7–14 ath = 0.3, 6–13 ath = 0.4, 5–11 ath = 0.5 and 5–10 ath = 0.6. The results of the
corresponding fits are given in figure 3(b). Here the points somehow have a larger error
(since we use less data points for fitting) but we expect the systematic error to be smaller.
The points ath = 0.2, for example, appear more consistent thanks to the elimination of
short-time effects. The emerging physical picture is independent of the fitting scheme.

For smallh in the SK modelq̃(h) = q̃(0) + Rq2
D, whereR ' P(0)/2, andP(0) is

the value of the functionP(q) at q = 0 whenh = 0. We have found that in the region
whereq̃ 6= qD the data are compatible with a quadratical dependence overqD. We find for
exampleR = 0.4 at T = 1.25, which is of the same order of magnitude ofP(0)/2 (the
value ofP(0) at this temperature is about 0.5 [12]).

Let us give some information about the exponent of the power-law fit we have
determined for the decay ofq(t). At low T (1.0 and 1.25) such exponents are between 0.2
and 0.3 with no apparent systematic dependence on the magnetic field. The fits on rescaled
time windows give higher values than the fits on all points (basically for lowT values
the results are fixed around13). We have also fitted the energy with a power decay to its
asymptotic value. Here the decay exponent can be estimated with good precision, and for
low T it does not depend onh. For example, atT = 1.00 we find an exponent of 0.435
for h going from 0.1 to 0.4. At T = 1.25 it is 0.47 for h going from 0.1 to 0.3, while at
T = 1.5 it already has a small dependence onh.

Our last numerical proof is based on rescaling the functionsqh(t) obtained for different
values ofh. We have rescaled our data obtained at different magnetic field values according
to qh′(t ′) = A(h)qh(B(h)t).

The coefficients for the rescaling to a fixed value ofh′ are fitted to the formA(h) ' Ãhω,
andB(h) ' B̃hτ .

The value of the crossover exponents may be found by assuming that the quantity∫
d4x h(x)2q(x) is dimensionless: the coupling term in replica space has a form∫
d4x h(x)2

∑
a,b Qa,b(x). The dimension ofq in the dynamic approach can be reconstructed

by the decay of the correlation functions. An approximate formula (which seems to work
reasonably well [13]) has been proposed in [14]:〈qxq0〉 ∝ x−λ, with λ ≈ (D − 2)/2.
This formula, together with dimensional analysis, implies that inD = 4 ω ' 2

7. A similar
analysis shows that inD = 3 λ = 2

11. Since the dynamical critical exponent is of order 8
in the temperature range aroundT = 1.25 the same argument implies thatτ ' 4.

We have determined the best coefficientsA andB by minimizing the square difference
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Figure 4. Rescaled functionsq(t) versus annealing time.

Figure 5. A andB from our best fit versush.

of the two functions. Below we discuss results atT = 1.0. The fits are very good: all the
rescaledq have ratios systematically compatible with 1, and there is no need for a further
extrapolation or corrections to our scaling formula.

In figure 4 we show the rescaled functions (horizontal and vertical scales are given by
the fact that we have kept fixed the values ath = 0.2). The scaling is obeyed remarkably
well: it works over six time decades, and in a range of magnetic fields going from 0.1 to
0.6. The errors on the data points are not plotted since they would blur the figure. They are
of the order of 0.01–0.02. For example the point ath = 0.1 with largestt values, that is
slightly out of the enveloping curve, is statistically compatible with the other points.A and
B determined with the fits of figure 4 can now be fitted with power laws. We plot them in
figure 5, withA represented by the upper points andB from the lower ones, together with
the best fits (the fitting functions are normalized in such a way to give 1 ath = 0.6). The
best fit givesA(h) ' 1.14(1)h0.25(1), andB(h) ' 5.4(3)h3.3(1). Even if this is a qualitative
test, since we have only a rough estimate from the mean-field approach, and in this case we
have not analysed the statistical and systematic error in great detail (since systematic error
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could be quite large for this measurement) the agreement with the values one would expect
from the mean-field solution turns out to be remarkably good.
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